活度

更新时间:2024-06-04 13:20

活度是为使理想溶液(或极稀溶液)的热力学公式适用于真实溶液,用来代替浓度的一种物理量。

概念发展

活度的概念首先由刘易斯(G.N.Lewis)于1907年提出,迅速被应用于电化学,以测定水溶液中电解质的活度系数。30年代中期奇普曼(J.Chipman)将活度概念引用于冶金熔体,并提出金属溶液中以1%浓度溶液为活度标准态,此建议迅速为冶金物理化学工作者所接受而推广采用。瓦格纳(C.Wagner)于1952年建议按麦克劳林(McLaurin)级数展开,奠定了冶金熔体中多组分活度系数计算的基础。50~60年代二十年间活度及活度相互作用系数的测定研究工作非常活跃,主要采用化学平衡及溶解度法,已逐步发展自成体系,成为经典的实验方法。60年代末期固体电解质氧电池开始作为测定黑色及有色金属熔体中氧的活度及相互作用系数的良好手段。70年代,黑色冶金的金属液及熔渣的活度数据已测出不少,但尚不完全。对有色金属、特别对熔熔盐等的活度数据则待做的工作更多。

活度系数反映有效浓度和实际浓度的差异。

活度系数

绝大多数的冶金反应都有溶液(固溶体、冶金熔体及水溶液)参加,而这些溶液经常都不是理想溶液。要进行定量的热力学计算和分析,溶液中各组分的浓度必须代以活度。活度是组分的有效浓度(或称热力学浓度)。组分的浓度必须用一系数校正,方能符合于若干物理化学定律(例如质量作用定律拉乌尔定律亨利定律分配定律等等),此校正系数称为活度系数

作用

活度不能解决冶金熔体的结构问题。它能指出组分在真实溶液与理想溶液中热力学作用上的偏差,但不能提供造成偏差的原因。由于高温实验条件下测定活度数据的困难,长期以来不少学者提出组分相互间的结构模型,借助于统计热力学进行计算,企图导出一系列公式以之对组分的活度系数进行预测,这对某些二元合金取得了一定的成功,但这些半经验公式只适用于某一特殊体系的物质,或某一体系的特殊的浓度范围,迄今尚未能找出适用于不同类型的普遍的合金体系的通用表达式。同样地,对二元系炉渣也有较好的模型,但尚很不成熟,不足以适用于所有不同类型的二元系炉渣。对三元系或多元炉渣的应用则更谈不到了。

通过浓度坐标的适当转换,对某些二元合金稀溶液的企图得到活度参数与浓度参数线性关系的尝试,也尚未获圆满的成功。

总之,活度应用于冶金过程,使得冶金反应能定量地进行热力学计算和分析,在阐明多种反应能否选择地进行,在控制调整产物能否达到最大产率,在控制冶炼操作如何在最优化条件下进行等等方面,已经起了并将继续起到应有的作用。冶金溶体(包括固溶体及水溶液)中组分活度的测定,利用活度探索熔体结构,以及从设想的结构预测组分的活度及其他热力学性质等,将仍是今后较长期的较重要的研究课题。

相关计算

拉乌尔定律亨利定律计算活度溶液是由两种或两种以上的物质(称为组分)组成的均一相。如果异种质点(原子、分子或离子)间的作用力和同种质点间的作用力相同,则此溶液称为理想溶液,而服从拉乌尔定律,也即溶液中组分i的蒸气压pi与其以摩尔分数表示的浓度Ni成正比,比例常数是纯组分i的蒸气压。

在真实溶液绝大部分的浓度范围内,组分i既不服从拉乌尔定律,又不服从亨利定律。对组分i的活度可按拉乌尔定律计算,得到aR,其活度系数用γi表示,浓度用Ni表示;也可按亨利定律计算,得到aH,其活度系数根据冶金工作者的惯例用fi表示,浓度用xi(即百分数)表示。

由于活度有不同标准态,所以计算出的标准溶解自由焓随所用活度标准态的不同而有不同值。但无论用哪种活度标准态,对已定条件下的冶金反应,算出的自由焓变量ΔG将永有同一值。

免责声明
隐私政策
用户协议
目录 22
0{{catalogNumber[index]}}. {{item.title}}
{{item.title}}